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Abstract The Faustmann forest rotation model is a celebrated contribution in economics.
The model provides a forest value expression and allows a solution to the optimal rotation
problem valid for perpetual rotations of even-aged forest stands. However, continuous forest
cover forest management systems imply uneven-aged dynamics, and while a number of
numerical studies have analysed specific continuous cover forest ecosystems in search of
optimal management regimes, no one has tried to capture key dynamics of continuous cover
forestry in simple mathematical models. In this paper we develop a simple, but rigorous
mathematical model of the continuous cover forest, which strictly focuses on the area use
dynamics that such an uneven-aged forest must have in equilibrium. This implies explicitly
accounting for area reallocation and for weighting the productivity of each age class by the
area occupied. We present results for unrestricted as well as area-restricted versions of the
models. We find that land values are unambiguously higher in the continuous cover forest
models compared with the even-aged models. Under area restrictions, the optimal rotation
age in a continuous cover forest model is unambiguously lower than the corresponding area
restricted Faustmann solution, while the result for the area unrestricted model is ambiguous.
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1 Introduction

Over the recent decades, storms, forest health decline, forest fire and pest issues as well
as climate change have raised concerns about the sustainability of much of the plantation
forestry in Europe—in particular with regard to coniferous species. Therefore, forest man-
agers and decision-makers have looked for an alternative management paradigm to provide
more stable forests and better support for the ecosystem services that forests provide, includ-
ing biodiversity protection, clean water, erosion control and carbon sequestration. In many
countries and regions it has been advocated that this alternative is found in what has been
termed near-natural or continuous cover forestry (Spiecker et al. 2004), and around the turn
of the millennium this change in the paradigm was officially adapted in, e.g. Wales (National
Assembly for Wales 1999), Niedersachsen (FNiedersächsisches Forstplannungsamt 1995)
and Denmark (Ministry of the Environment 2002).

For these reasons, the economics of the conversion from coniferous to deciduous tree
species and from even-aged to continuous cover1 forests has been subject to several empirical
and numerical case analyses (e.g. Buongiorno 2001; Hanewinkel 2001; Knoke and Plusczyk
2001; Price 2003; Tarp et al. 2000; Wollborn 2000; Price and Price 2006; Tahvonen 2009).
These numerical analyses have tried to capture the effects of issues like smaller regeneration
costs, potentially larger harvesting and management costs, different assortments (harvest
diameters), and the more complex forest dynamics of continuous cover forestry (CCF).
Case-specific effects on value production as well as decision parameters like thinning rules
and rotation ages have also been discussed and analysed numerically.

The basis for such analyses is the celebrated Faustmann formula attributed to the German
forester Faustmann (1849), who discussed the correct valuation of a piece of land in forestry
use. A few years later Pressler (1995) published similar ideas. This soil expectation value
has long been widely accepted as the only correct criterion for maximisation of the value of
an even-aged forest with a perpetuity of identical rotations of forest. It was solved correctly
for the first time by the Swedish economist Ohlin (1995), though Samuelson (1976) suggests
that Faustmann’s writings indicate he knew of the correct solution too. This paper is the
first to present and analyse a model of how we can extend the Faustmann–Pressler–Ohlin
framework to encompass and shed light on the effects of one of the significant differences
between continuous cover forestry and the even aged Faustmann forestry: the different ways
in which land is utilized by the trees of different age classes in the forest.

One assumption of the Faustmann formulation sometimes questioned is that of a perpetuity
of identical rotations. Alternative assumptions are, however, easily handled as shown by e.g.
Navarro (2003) who show how to adjust for alternative uses of forested land in the future.
Another issue often addressed in the literature due to the long time horizon and infrequent
cash flows at forest stand level is the possible requirements for particular levels of cash flows
(typically more or less even flows). Under certain circumstances a normal forest (with equal
areas in each even-aged age class) is optimal and supports an even cash flow (Heaps 1984;
Salo and Tahvonen 2002). In some countries the area allocated to forestry and other land
uses is in practice fairly fixed or even given by law and not easily changed. This violates
the assumption of free land and capital markets and raises the question whether maximising
the value under the assumption of an area restricted situation deviates substantially from
the unrestricted case of CCF as we know it does in the Faustmann case. If we assume no
substitutability between land and capital, maximisation of the economic return under an area

1 We use the term “continuous cover”. “Uneven-aged” is also used frequently in the literature—mostly as a
direct synonymous.
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restriction provides a solution, where the optimal rotation age is independent of the interest
rate, and equal to the maximum sustainable yield from a given area2 (Reed 1986).

A key feature of the Faustmann model and the associated normal forest concept is that
once a mature stand, and hence a tree, is harvested, the land area and resources (access to soil
minerals, nutrients, light, precipitation etc.) released are, from an economic point of view,
allocated entirely to regenerating a stand of trees of the youngest age class in the forest. In the
CCF models, the un-even and multi-storey stands, and in particular the resulting spatial and
vertical structures of the stands, imply different dynamics of area use. This has been pointed
out by silviculturists as a potentially strong cause of increase in economic productivity.3 It
is this intriguing aspect of CCF that we focus on here.

When analysing the economics of CCF, different forms of numerical diameter-class or
single-tree growth models have been used. Several authors extend the Faustmann approach
for optimal rotation age to CCF by assuming that the aim is to maximise the present value of
returns from a present state to infinity (e.g. Buongiorno 2001; Jacobsen et al. 2013;Knoke and
Plusczyk 2001; Schou et al. 2012). Adams and Ek (1974) were among the first to describe
continuous cover forest stands by a diameter-dependent matrix model and modelling of
growth, and thereby making the calculation and optimization of the value of s CCF numeri-
cally manageable. Adams and Ek (1974) look at the optimal stand structure, not the optimal
rotation age, though this is indirectly included. Haight (1985) extends this problem to include
optimal rotation age, and since then similar numerical approaches have been extensively used
for various variants of CCF (e.g. Buongiorno 2001; Haight 1985, 1990; Heshmatol Vaezin
et al. 2009; Jacobsen and Helles 2006; Price and Price 2006; Pukkala and Kolström 1988;
Tahvonen 2009; Meilby and Nord-Larsen 2012; Rämö and Tahvonen 2015).

So far, there have been only few attempts to analyse rigorously and analytically the various
aspects of continuous cover forestry relative to even-aged forests (Kuuluvainen et al. 2012).
However, no successful attempts to include the difference in how area is utilized at stand
level into algebraically solvable models of the forest valuation principle have been made.
Samuelson (1976)mentioned the importance of including area utilization, but did not analyse
this further. In an extensive review Newman (2002) did not mention models with the area
utilization across age classes. Nautiyal (1983) did include area in his algebraic description
of the maximisation problem in CCF, but assumed that area utilization is independent of tree
age and therefore it does not influence the results.

Within fisheries economics, there have also been attempts to handle uneven-aged struc-
tures, through year-class models and cohort models, starting with the paper of Beverton and
Holt (1957). However there are important differences to the characteristics of the resource:
1) In fishery models, harvest is the control variable, whereas in forestry it is the rotation
age, 2) growth in fishery depends on the stock, whereas in forestry it depends on time, and
3) fish moves around and can thereby utilize unoccupied space. This causes that the spatial
dynamic differs. Furthermore, there are differences in terms of management practice and
consequently the focus of how to optimize: in fishery, regeneration takes place by (naturally)
spawning, whereas in forestry it may also take place through planting (see Conrad and Clark
1991); and selectivity of gears when harvesting is central in year-class models in fishery,

2 This only holds under the conditions of no regeneration costs and no price-dependency on tree size. Two
simplifying assumptions we maintain in this paper.
3 Morsing (2001) and as early as Muus (1921) mention the importance of distribution of area utilization
between trees and the fact that in uneven-aged management more space can be occupied by larger trees
that may have a higher value growth per area and time unit, relative to the Faustmann normal forest case.
However, little empirical evidence exist (O’Hara and Nagel 2006) which can attribute the difference solely
due to different structures.
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whereas selectivity can be made perfectly in forestry (see Neher 1990). Finally, the focus
differs in forestry, where no market failure due to a stock externality is present. Therefore, in
forestry focus is on optimal extraction from a private owner’s perspective, whereas in fishery
the focus is on welfare economic optimum and regulation hereof. Consequently, while there
are similarities to the literature of fishery, the question we address here of area utilization is
not addressed in the fishery economic literature.

In this paper we aim to describe analytically the economic implications of incorporating
area utilization in a forest rotation framework. We do so by suggesting a parallel formulation
to the Faustmann formula fitting the CCF case, where the dynamics of area utilization in
the forest stand are taken into account. We also derive expressions for the optimal rotation
age. Methodologically the approach in this paper is similar to that of Chang (1981), but
with important extensions of model assumptions, which allow us to produce new results that
explicitly consider area utilization across age classes occupying the same forest stand. We
look at the optimal rotation age and area use within each forest stand of a forest, both with
and without restrictions on the total area of the forest and compare the expressions with the
Faustmann and maximum sustainable yield solutions. Including area utilization in a way
where it is endogenous to management has not been handled in the forest valuation and
management literature before.

The paper is organized as follows. In the next section we elaborate on the problem in
question and provide some simple arguments illustrating the importance of the different
dynamics of area utilization that we include in this paper. Furthermore, we describe here
some of the basic assumptions. Section 3 contains different models for the continuous cover
and Faustmann cases and in Sect. 4 we provide a numerical illustration of the impact that
this new approach may have on the economics of forest management. We conclude with a
discussion of results and potential roads ahead.

2 The Problem in Focus

Figure 1 illustrates a basic difference between an even-aged forest as in theFaustmann rotation
model and the CCF that we investigate in this paper.

As illustrated in Fig. 1 an implicit assumption in the classic Faustmann rotation model is
that the single final-harvest tree is allocated a constant area throughout its life. Hence, the
age-dependent production function for a single tree is related to a constant area—irrespective
of tree age. As a consequence the value of the well-known normal forest in the Faustmann
model is simply the sum of the present values of the different age classes, each occupying a
constant area in perpetuity. Figure 1 also show that in the classic Faustmann case, when we
harvest an old tree the entire area it occupies is utilized by a new, small tree.4

We explore the consequences of replacing this assumption with an alternative assumption,
which captures the dynamics of CCF, but nevertheless remains a strong simplification, as is
the Faustmann model. The basic assumption is that in the CCF, each age class only utilise
the area needed for an adequate development over its lifetime.5 Ass shown in Fig. 1 this
has two consequences: (1) the area allocated to an age class depends on its age, so that the
productivity is weighted by the area use of the age class (2) when an age class is harvested

4 Notice that the classic Faustmann model and also our interpretation here are neglecting thinnings—of
evenaged trees. In reality these may play a substantial role for the area utilization, and the setup can be
expanded to that cover that situation, but at a loss of mathematical tractability in particular in the CCF case.
5 We do not discuss the issues of competition, crown development and stem growth in more detail here. By
‘adequate’ we mean to imply a development known to result in healthy growth and good stem quality.
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Normal (Faustmann) forest Continuous cover forest (CCF)
Area allocation to age classes

Area redistribution post harvest

Fig. 1 Stylised illustration of the area distribution across age classes and the re-allocation of area post-harvest
to remaining trees shown for both the forest systems. Dark grey shows current area utilised by existing trees.
Light grey shows area about to be utilised through growth into the area opened after cutting a large tree. Empty
areas in circles shows land allocated to, but not utilised by an age class. In the normal (Faustmann) forest
there is a large area not being used by the younger trees, whereas in the CCF the age class only utilize the area
needed. Thus there is a more efficient area re-allocation

the area is re-allocated to all younger age classes using the released area. Thereby the CCF
obtains a more efficient area use expressed through area-reallocation after harvest compared
to the Faustmann model.

We also assume that age is the basic control variable in the model6 and we ignore thinning
and regeneration costs. This allows us to focus on the pure effect of area allocation on optimal
rotation age and the value of land in forest utilization. We furthermore simplify the problem
by making the following assumptions:

(a) Once a tree is harvested, trees of younger age encroach immediately into the released
area and occupy the released area completely.

(b) The volume growth of the individual tree over its lifetime is identical in the continuous
cover and the even-aged forest.

(c) We ignore mortality, though this can be interpreted into the model quite easily as
accounted for in the area taken up by an age class.

(d) We assume that only the oldest trees are harvested.7

Notice that the difference in area utilization between the CCF and the Faustmann model
is the only difference we focus on, keeping all else constant. It is of course a simplification to
assume that space is immediately used by other trees as trees cannot pull up their roots and
move around. However, idle land will be taken over eventually and we thus simplify away a
possible delay in this.

6 As did Faustmann and many others. Alternatives could be size, diameter or value, but as we like Faustmann
assume an identical age-size-value relationship for all individual trees—and across the forest types, age is as
appropriate as size.
7 By this assumption we avoid the need for multiple state variable models, and this eases the comparison of
the models. We discuss the consequence of this assumption later.
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3 Algebraic Models and Results

In this section we present four models, starting with the classic Faustmann model, deriving
the well-known results (Sect. 3.1). After that, in Sect. 3.2, we impose an area restriction
on the Faustmann model, and solve for the optimal rotation age for a forest containing all
age classes, e.g. as in the normal forest (Heaps 1984), which we use as a benchmark. The
optimality conditions for this formulation, turns out to be the maximum sustained yield
solution as also mentioned in Neher (1990) and Möhring (2001). After that we develop a
similar model for CCF, i.e. an area restricted CCF model and derive the optimal rotation
age (Sect. 3.3). Last, we relax the area restriction for the continuous cover model and we
also derive the optimal rotation age for this case in Sect. 3.4. In Sect. 3.3 we also compare
a Faustmann model and a CCF model with an area restriction while the two models without
an area restriction are compared in Sect. 3.4.

3.1 The Traditional Faustmann Model

Without a restriction on how much land to allocate to forestry, we can derive the optimal
rotation age for each stand of trees and find the optimal area of the forest and the optimal forest
value. Thus, in the traditional Faustmann rule, ignoring establishment cost and thinnings, we
maximize the present value of the return from one rotation taking into account that once trees
is harvested, the land is used for another identical rotation. Assuming indefinite time horizon
we get the following problem8:

MaxVF = Max[e−rT (m(T )a(T ) + VF )]= Max

[
e−rT

1 − e−rT
m(T )a(T )

]
(1)

where T is the rotation age, r is the discount rate,m(T ) is the value per area unit of a tree that
is harvested at time T , a(T ) is the area utilized by trees of age T and released by harvesting
at time T , VF is the soil expectation value.

In (1) m(T )a(T ) represent the value of trees harvested at T . Because the area allocated
to each age class is constant, it equals the usual formulation with just a single function (see
e.g. Neher 1990). However, in Sects. 3.2 and 3.3 we develop models with an area restriction,
and to allow for comparison it is useful to distinguish the area of an age class, a(T ), and
the value per area unit of an age class, m(T ) already now. We assume that m′(T ) > 0 and
m′′(T ) < 0 within the relevant range of the age of trees and that area utilization of an age
class is constant over the life time of the trees so that a(t) = a(T ) and thereby a′(t) = 0 for
all t .

In the middle expression in (1) the first term represent the present value of trees harvested
at T (e−rT m(T )a(T ))while the last term is the present value of all future rotations (e−rT VF ).
The first two expressions in (1) can be solved for VF , and the solution to this problem is the
last expression in (1). This expression shows that the value of a forest in a Faustmann model
can be represented as an annuity with a value on m(T )a(T ) paid with fixed time intervals

and e−rT

1−e−rT is normally labelled the perpetuity factor. Finally, following Samuelson (1976)
VF can be considered as the value of bare land for forestry production.

8 To ease interpretation, we use a slightly different notation from that in Faustmann’s original paper.
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The first-order condition for maximization of the last expression in (1) is:

V ′
F = (1 − e−rT )(−re−rT m(T )a(T ) + m′(T )a(T )e−rT + a′(T )m(T )e−rT

(1 − e−rT )2

−re−rT e−rT m(T )a(T )

(1 − e−rT )2
= 0 (2)

Rearranging (2) and using that e−rT cancels out gives:

m′(T )a(T ) + a′(T )m(T ) = rm(T )a(t) + rm(T )a(T )e−rT

(1 − e−rT )
(3)

Using that a′(T ) = 0 implies that (3) can be written as:

m′(T )

m(T )
= r

[
1 + e−rT

1 − e−rT

]
(4)

Equation (4) states that at T the relative marginal value growth of the stand must equal the
capital cost of the stand. This capital cost of the stand can be interpreted as the opportunity
cost of the capital tied up in the current stand of trees (r) and the opportunity cost of capital

for the future stands
(
r e−rT

1−e−rT

)
. Belowwe refer to the right hand side of (4) as the Faustmann

capital cost of forest production assuming infinite time.

3.2 The Faustmann Model with an Area Restriction and a Normal Forest as
Starting Point

The Faustmann rule gives the value of bare land for production of a single stand. As a contin-
uous cover forest in equilibrium consists of an entire forest with all age classes represented,
it is useful, for comparison, to investigate an entire normal forest consisting of T age classes9

on a given area, A. Thus, the area is restricted to A covered by a normal forest. We can
formulate an area restricted Faustmann model as:

MaxVFAR = Max

⎡
⎣

T∫
O

e−r(T−t)m(T )a(T )

1 − e−T
dt

⎤
⎦ (5)

s.t Ta(T ) ≤ A (6)

where A is the total area available for the forest. Note that e−r(T−t) is used in the nominator
in (5) when discounting, instead of e−rT as in (1), because of the assumption of an initial
normal forest with all trees present. Thereby a tree of t years is harvested T − t years from
now.

We solve the integral in (5) and the objective function reduces to:

MaxVFAR = Max

[
m(T )a(T )

r

]
(7)

As the area restriction is binding (6) may be written as:

a(T ) = A

T
(8)

9 In a normal forest an equal area is allocated to all T age classes and therefore T becomes both the number
of age classes and the rotation period.
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Inserting (8) into (7) yields the following problem:

MaxVFAR = Max

[
m(T )A

rT

]
(9)

The first-order condition is:

V ′
FAR = m′(T ) ArT − m(T ) Ar

(rT )2
= 0 (10)

(10) may be written as:
m′(T )

m(T )
= 1

T
(11)

Thus, at the optimal rotation age the proportional increase in value production on an area
unit equals a proportional decrease in the area available for each age class. The result in (11)
is a variant of the maximum sustainable yield solution (see Neher 1990), with the difference
being that M here captures value production and not only biophysical production. Thus, at

T the average value
(
m(T )
T

)
is equal to the marginal value [m′(T )]. Notice that the interest

rate has dropped out in (11) and this implies that no substitution possibilities between land
and capital exist.

In order to compare (11)withCCFwith an area restriction it is useful towrite the optimality
rule in an alternative way.With a binding restriction a Lagrange-functionmay be set up based
on (6) and (7):

L = m(T )a(T )

r
− λFAR (Ta(T ) − A) (12)

where λFAR is the shadow price of one unit of area and this can be interpreted as the marginal
opportunity cost of land in the Faustmann model. The first-order condition with respect to T
can be derived and this condition may be written as:

m′(T )

m(T )
= rλFAR

m(T )
(13)

By comparing (11) and (13) we see that, at the optimal T , the marginal opportunity cost of
land,λFAR , is equal to the average present value of production per unit of land:

λFAR = m(T )

rT
(14)

3.3 CCF with an Area Restriction

Like in the Faustmann normal forest, the continuous cover forest also have all age classes
represented, but importantly age classes do not take up the same amount of land, and they
are mixed in between each other all over the forest area. However, the starting point is still
that harvesting is “normal”, i.e. the same amount harvested each year. Furthermore, in a CCF
model, land use dynamics imply that once we harvest a mature age class and start a new
rotation (at age t = T ) the area and thus growth space liberated is allocated entirely to all
age classes according to the growth in area, a′(t), of each age class and including the space
taken up by the newest generation, a(0). We assume that a′(t) ≥ 0. Note that at any t the
change in area utilization of trees in all age classes is exactly equal to the area released, a(T ).

The cash flow resulting from this intermediate production from the land, a(T ), occurs as
the age classes that take this area mature and are harvested. Assuming that the entire forest
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covers an area A and again assuming the same production function for all age-classes, m(t),
we can write the maximization problem of the area-restricted CCF as:

MaxVCAR = Max

[
m(T )a(T )

r

]
(15)

s.t.

T∫
0

a (t) dt ≤ A (16)

Equations (15) and (16) are similar to (5) and (6) except for the fact that the area utilized by
an age class, a(t), is now a function of age and not constant as in Sect. 3.2. We note that a
nice feature of this model is that when a(t) = a(T ), (15) and (16) are identical to (5) and
(6). With respect to the value of a forest in the models with an area restriction [(5)–(6) and

(15)–(16)], we note that
T∫
0
a (t) dt ≤ Ta(T ). Therefore, the value of a forest area is larger in

the continuous cover model than in the Faustmann model ceteris paribus.
With a binding area restriction, (16), the Lagrange-function becomes:

L = m(T )a(T )

r
− λCAR

⎛
⎝

T∫
0

a(t)dt − A

⎞
⎠ (17)

where λCAR is the marginal opportunity cost of land in the CCF model.
The first-order condition is given as:

∂L

∂T
= m′(T )a(T ) + a′(T )m(T )

r
− λCARa(T ) = 0 (18)

Now (18) may be written as:

m′(T )a(T ) + a′(T )m(T )

a(T )m(T )
= λCARr

m(T )
(19)

The interpretation of (19) is identical to the interpretation of (13) and for a constant a(T )

and thereby a′(T ) = 0 the two equations are identical. Thus, as in Sect. 3.2, the total value
growth is equal to the opportunity cost of land times the interest rate divided by the value
per area unit at T . Using (17) and the fact that the two models are identical under Faustmann
assumptions on a(T ), we can deduce that λCAR is the marginal opportunity cost of land as
in Sect. 3.2, Thus, the shadow price is given by:

λCAR = m(T )a(T )

r
∫ T
0 a (t) dt

(20)

By comparing (20) with (14) we see that λFAR < λCAR as we know from (16) that the
value of an average unit of area is higher in the CCF model than in the Faustmann model⎛
⎜⎝ 1

T <
a(T )

T∫
0
a(t)dt

⎞
⎟⎠. Thereforewe obtain that m

′(T )a(T )+a′(T )m(T )
a(T )m(T )

is smaller in the area restricted

Faustmannmodel, cf. comparison of (19) and (13). By assumptionm′′(T ) < 0 anda′′(T ) < 0
and consequently the optimal rotation age becomes larger in the area restricted Faustmann
model than in the area restricted CCF model.
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3.4 The CCF Model Without an Area Restriction

As above we consider the problem of choosing the T that maximizes the value of a piece of
land for forest use. However, nowwe relax the assumption of a restricted area being available
for the forest, but as is inherent in the continuous cover forest, all ages are present in the
forest from the beginning. For CCF without an area restriction the objective function needs
to capture the return, in perpetuity, from harvesting from any specific area unit a(T ). The
returns include not only the mature age class harvested at one point taking up all of a(T ),
but also the returns from the area being used in part by other age classes harvested before T
until it T years later is again occupied solely by a single age class of age T .

An example may illustrate the principle. Consider an age class T ′. Once harvested the
area of T ′, a(T ′) is reallocated to younger trees, which when in turn they mature and are
harvested, release their entire area, including the part of the a(T ′) they took over from a(T ′),
which is then reallocated to other trees, and so on. Thus, a substantial part of any area, a(T ),
at one point being occupied by only the age class T will over the course of the next T years be
covered by several different generations. Consider the next to last generation, T ′−1. It will
be harvested a year later, and the area a′(T −1) it overtook from the age class T ′ will then be
re-distributed in part to the other trees that also took over part of a(T ′). Thus, to capture all
the value production from an area a(T ), we need to integrate both over time represented by t ,
but also over the T events of shifting land dynamic across the T age classes to be harvested,
which each use part of a(T ).

The objective function for maximizing the value of a piece of land, a(T ), right after a tree
of age T has been harvested, can thus be formulated as10:

MaxVc = Max

⎡
⎣m(T )a(T )e−rT

1 − e−rT
+

∫ T
0

a′(t)
a(T )

m(T )a(T )e−r(T−t)dt

1 − e−rT

+
∫ T
t=0

∫ T
i=t

(
a′(i)

a(T )−a(t)m(T )a′ (t) e−r(T−i)
)
didt

1 − e−rT

+
∫ T
t=0

∫ T
i=t

∫ T
j=i

(
a′( j)

a(T )−a(i)m(T )a′ (i) e−r(T− j)
)
d jdidt

1 − e−rT

+ · · · +
∫ T
t=0

∫ T
i=t

∫ T
j=i · · · ∫ T

g
∫ T
f =T

(
a′( f )

a(T )−a(g)m(T )a′ (g) e−r(T− f )
)
d f dg . . . d jdidt

1 − e−rT

⎤
⎦

(21)

As in Sect. 3.1 the first term on the right hand side is the present value of an infinite series of
identical rotations of an age class harvested at age T evaluated at t = 0. The remaining terms
in (21) essentially capture the value of the intermediate returns to a specific area, a(T ), from
other age classes using parts of the area until a new age class utilizes the entire area at age
T . Because these intermediate returns also occur in all future rotations, we must multiply all
these terms by the perpetuity factor, 1/(1 − e−rt). Notice that these intermediate returns are

10 Remember that definite integrals are defined as limits on upper and lower boundaries on integration vari-
ables. Thus, in the third term we do not integrate over i = t but only a time approximately close to i and in (21)
i = t in the third term is captured by the second term. Likewise, we only get approximately close to T at the
upper limit of the integral. In this way we avoid double counting because we have a discontinuity in a(t) at T.
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not thinnings, they result from harvesting of mature trees, which occupies a fraction of the
area when harvested.

Looking at the intermediate return terms, the second term is the largest because it captures
the value of the returns arising from re-allocation of the entire area a(T ) to all age classes
younger than the one just harvested and older than the youngest one just established as
replacement. Note that, in equilibrium, the aggregate change in area utilization of all age

classes in any time period is exactly equal to a(T ), i.e.
T∫
0
a′(t)dt = a(T ). From this it

follows that the area is re-allocated according to the change of each age class, a′(t), and that
the intermediate return resulting from an age class arises at T − t . The implication of this is
that the full area is allocated to age-classes that mature at different points in time.

The third and higher order terms in (21) all capture that once an age class, which has been
occupying part of the area in focus, is harvested, the part of the a(T ) area is reallocated to the
younger age classes on the area a(T ), including the youngest which will eventually take over
again the entire area. For the first tree harvested after T the area re-allocated to age classes of
younger age t is a′(T ), according to the same logic as for the second term in (21). However,
the area available for re-allocation is only the part of a(T ) that is taken over by the age class,

which is given by a(T ) − a(t). Note that because
T∫

i=t
a′(i)di = a(T ) − a(t) we have, as

for the second term, reallocated the full area part of a(T ) released at each intermediate time
period between 0 and T . The fourth term captures the value of area available and reallocated
at time i and so on. This chain of integrals continues until f = T and this is captured by the
last integral in last term.We note that as the time goes, fewer and fewer age classes will share
a still smaller part of the area a(T ) considered. Thus, as the integral terms become more and
more complex, the numerical value of these terms becomes ever smaller.

From (21) we can, in principle, derive a first-order condition with respect to T . However,
such a condition would be excessively complex to derive and interpret because of the chain
of integrals from the third term and onwards. We, therefore, conduct a second-order Taylor
approximation of (21) around the point where t = T .11 This approximation yields:

Max

⎡
⎣Vc = e−rT m(T )a(T )

1 − e−rT
+

∫ T
0

a′(t)
a(T )

m(T )a(T )e−r(T−t)dt

1 − e−rT

⎤
⎦ (22)

Herewe keep in a(T ) to ease interpretation. Comparing the two expressions for Vc in (21) and
(22) we see that the third term and onwards in (21) are excluded in (22). Thus, we include the
two terms with largest value in (22) and exclude those with an area re-allocation significantly
smaller than a(T ), and hence a smaller value production than for the second-order terms.
The implication is that Vc in (21) is underestimating the true Vc for an unrestricted CCF. The
size of this underestimation is illustrated for a numerical example in Sect. 4.

Comparing (22) with (1) the difference is the second, additional term in (22).
Thus, the value of forest land, keeping T fixed, is largest in a CCF model because
T∫
0

a′(t)
a(T )

m(T )a(T )e−r(T−t)dt

1−e−rt > 0. Therefore, a CCF has a higher present value per area than the
Faustmann forest, ceteris paribus. Notice that as T increases, the area occupied by the forest

11 A requirement for the Taylor series approximation is continuity of the objective function with respect to
a, m and t. This is also a requirement in most other economic models used for optimization (Varian 1992),
including the ones earlier in this paper, and it will hold for most functional forms that can be imagined in the
current setting.
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increases in the unrestricted CCF model, but not in the unrestricted Faustmann forest. Notice
also, that the value of CCF is larger than for the Faustmann model, but this is also contingent
upon a forest already being established, giving an early return.

We may now derive a first-order condition of (22) and this condition is given by:

m′(T )a(T ) + a′(T )m(T )

m(T )a(T )
= r

⎛
⎝1 + e−rT

1 − e−rT
+

T∫
0

a′ (t)
a(T )

ert dt

+ 1

1 − e−rT

T∫
0

a′ (t)
a(T )

e−r(T−t)dt

⎞
⎠ − a′(T )

a(T )
erT − m′(T )

m(T )

T∫
0

a′ (t)
a(T )

ert dt (23)

Now we interpret (23) by comparing the solution for CCF in (23) with the solution in the
traditional Faustmann forest in (4).We start by noting that the Faustmann capital cost of forest

production for infinite time. r
[
1 + e−rT

1−e−rT

]
, is included in both models. However, for CCF

the capital cost term has two additional components given by r
T∫
0

a′(t)
a(T )

e−r(T−t)dt/(1 − e.rT )

and r
T∫
0

a′(t)
a(T )

ert dt . Because these are positive, they make the capital cost measure larger, and

thereby push the rotation age down.
However, the components reflecting the differences in the marginal value of production of

the CCF forest also appear in (23). They essentially belong on the LHS along with the other
marginal return components but we move them to the RHS for ease of comparison across the
four results. These terms relate to the relative change in area utilization, erT a′(T )

a(T )
, and themar-

ginal change in the present value of the production across the age classes, m
′(T )

m(T )

T∫
0

a′(t)
a(T )

ert dt .

The two components are negative, when placed here on the RHS, and this tends to make
the rotation age larger because a′′(T ) < 0 and m′′(T ) < 0. Thus, comparing rotation age
between CCF and Faustmann forest without area restrictions is ambiguous and the final
effect will depend on the relative size of the terms added and subtracted (i.e. on the func-
tional forms of a(T ) and m(T ) and on the size of the discount rate). We analyze this issue
by using simulations for reasonable specific functional forms in Sect. 4.3.

Note that the first-order condition in (23) is based on a second-order Taylor approximation
of the true present value of aCCF. Including terms of third and higher orderwould increase the
capital cost and this would tend to make the rotation age smaller. However, at the same time
the marginal value of forest production becomes larger and this tends to increase the rotation
age. Thus, compared to the original Faustmann model using the full objective function in
(21) has the same ambiguous effects as when using a second-order Taylor approximation.
To conclude we cannot say anything definite about the rotation age when comparing the
Faustmann model and continuous cover model without an area restriction.

4 Numerical Illustrations

In this section we will illustrate the analytical solution from Sect. 3 by the use of reasonable
functional forms. We will focus on numerical examples of assessing the optimal rotation
ages for the different models, and we will show likely outcomes. We have also undertaken
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Table 1 Parameters in the
Gompertz function

m(t) a(t)

G 0.15 0.10

K 250,000 0.02

an assessment of the approximation error implied by the Taylor series approximation in the
fourth model variant in Sect. 3.4.

4.1 A Numerical Example

Most advanced empirical forest growth models account for multiple generations growing
together under competition. However, different species are too complex to be of use for
illustrating the models in this paper. Therefore, we assume functional forms for a(T ) and
m(T ) that are simple but have parametric values of reasonable sizes in order to evaluate the
impact of different model assumptions. For both functions we choose a variant of a Gompertz
function with the general form for growth x ′(t), where x(t) can be either a(T ) or m(T )12.
Thus, we have that is:

x ′ (t) = gx ln (Kx/x (t)) . (24)

where Kx is a parameter giving the maximum level of x (carrying capacity) and gx is the
initial growth rate. We chose values of the parameters gx and Kx for the two functions
that resembled realistic sizes and patterns of the growth in beech under favorable site and
productivity conditions in Denmark (Nord-Larsen et al. 2009). The various values are shown
in Table 1.

We analyzed the results for a number of alternative parameter values to test the sensitivity
of the results to these. In addition we selected an interest rate r of 4%, but we also undertook
a range of sensitivity analyses for this parameter (see Sect. 4.2 below). The interest rate
selection is based on the observation by past studies that equilibrium return rates and hence
discount rates for long rotation forestry system are typically quite low (below 4%) in the
Nordic countries (Brukas et al. 2001; Lundgren 2005; Thorsen 2010) and North America
(Washburn and Binkley 1990, 1993). Short rotation plantations may have higher equilibrium
returns (Brukas et al. 2001).

4.2 Optimal Rotation Age

In Figs. 2 and 3, we show corresponding solutions to the optimal rotation age problems in
the four different models (from Sects. 3.1 to 3.4).

We see how the rotation age is lower in the area restricted CCF model than in the corre-
sponding Faustmann model, as predicted in Sect. 3.3. For the unrestricted forest models, we
were not able to find an unambiguous result in the Sect. 3.4, but the numerical results here
shows that the rotation age in the CCFmodel is higher than the rotation age in the Faustmann
model. Note how the RHS of the area restricted CCFmodel has a significantly different form;
and remember that this is caused by the different ordering of the marginal value and marginal
cost terms for this solution.

12 This function is chosen as the driving factor for both m and a is the biological growth—and limits imposed
by competition for resources. For realistic assumptions of price development (e.g. that price increase by
dimension, but only until dimensions are too large to handle) this general functional form is not contradicted.
Thus, by working with a Gompertz function it is generalized to a relatively flexible form.
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Fig. 2 First order conditions for the area unrestrictedmodel. We find a rotation age that is longer for the CCF
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Fig. 3 First order conditions for the area restricted model. We find a rotation age that is shorter for the CCF
solution than for the Faustmann solution. CCF refers to continuous cover forestry

Our numerical result holds for different interest rates and parameter assumptions. We
found that it is most sensitive to g for a(t)—and hence the larger g, the closer are the two
rotation ages. This reflects the fact that the faster the initial growth in area utilization, a′(t), of
a new tree, the less the time needed to take over the entire area a(T ) and the smaller becomes
the differences between the two forestry systems.
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Table 2 The size of the three first RHS-terms of Eq. (21) and the pairwise ratios between them for various
discount rates

Interest rate (%) 1st term 2nd term 3rd term Ratio 2:1 Ratio 3:1 Ratio 3:2

0.50 7058 8816 578 1.25 0.08 0.07

1 2833 4451 318 1.57 0.11 0.07

2 878 2240 188 2.55 0.21 0.08

3 346 1482 145 4.28 0.42 0.10

4 148 1091 123 7.40 0.83 0.11

5 65 852 109 13.16 1.68 0.13

6 29 691 99 23.99 3.45 0.14

7 13 576 92 44.71 7.18 0.16

4.3 The Second-Order Taylor Approximation

A main assumption in Sect. 3.4 is the second-order Taylor approximation applied in (22).
For a given rotation age (T = 80), we estimate the size of the three first RHS-terms of (21)
for different interest rates and the results are shown in Table 2 above.

The first thing we notice is that the second term is much larger than the first term. Thus the
value of a CCFwill bemuch larger than a traditional Faustmann forest. The size ratio depends
on the explicit functional form of a′(t)—the faster the initial increase in area utilization, the
smaller the ratio. Remember, however, that VF and VC are not directly comparable as the
requirement for the CCF model is that there are already trees on the area which can give the
return captured by the second term. Thus VC is the present value of an existing forest with
multiple age classes rather than a soil expectation value of bare land.

Next we notice that the third term is much smaller than the second term—7–14% for the
chosen interest rates. We also see that the higher the interest rate, the larger is the approxima-
tion error, the reason being that the intermediate return in the integrals (for t between = and
T ) weights more relative to the final harvest at T multiplied by the eternity factor for high
interest rates. The error is sufficient low for the approximation to be reasonable, in particular
as relevant interest rates, as explained above, are typically below 4%. Other functional forms
were tried, and the results described above hold for a variety of assumptions.

5 Discussion

Forest managers and researchers in silviculture all over Europe have looked to German
traditions for CCF and management of mixed species stands. These management systems
are often considered more sustainable than the clear-cut based plantation systems usually
associated with Faustmann forest economics. In Germany, many forests are managed more
or less according to continuous cover principles and rotation ages are often found to be higher
than the ages usually implied by the Faustmann criterion. There may be many reasons for
this and one reason is the long-standing debate about whether or not to use interest rates in
decision making (Möhring 2001), but of course other things like different growth patterns,
harvesting rules, returns and costs matter. However, an obvious question is whether it is an
optimal feature implied by the continuous cover management system per se. Likewise, many
observers have pointed out that the volumes and values tied up in German forests (managed
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according to near-natural principles) aremuch higher than typical average volumes and values
in forests managed according to Faustmann’s rules. Again the explanations may be many, but
it is relevant to investigate if it is a result to be expected because of the different management
dynamics per se (Möhring 2001). In other words, is the higher capital stock observed in CCF
in fact optimal, seen from a traditional economic objective, or are other explanations needed?

The models presented in this paper address one particular aspect of the CCF systems,
which we find intriguing, and this aspect is the way different age classes over time share the
land area. We stress that the models are abstract, and based on rather crude assumptions—
much like the Faustmann model. Nevertheless, we believe the models offer some insights
into economic aspects of CCF. This may help pinpoint some of the likely differences between
optimallymanagedCCF and the classic even-aged forest. Including area dynamics essentially
results in two consequences—a more efficient area use through a different area re-allocation
and a weighting of the productivity by the area use of each age class.

We showed formally that the value of the CCF will always be larger than or equal to the
value of the Faustmann forest for any given rotation age. This conclusion holds both with
and without an area restriction. The explanation is that larger trees with a higher volume per
area unit cover a higher proportion of the area in the CCF, thereby utilizing the area more
efficiently. Therefore, CCF must have a larger standing volume per hectare in the optimally
managed forest.

The optimal rotation age in aCCF forest is likely to be affected too. For the area unrestricted
models we find that the optimal rotation age may be shorter or longer compared with the
Faustmann rotation ages. In our numerical illustration (Table 1; Fig. 3), we find that the
rotation age is higher for realistic functions of a(T ) and m(T ) in the continuous cover
model. For the area restricted models, the results are unambiguous, and we find that the
optimal rotation age of the CCF will always be shorter than the corresponding area-restricted
Faustmann rotation age. This is a result of the shadow cost of land being higher under the
more productive continuous cover system. The difference between the systems in the area
unrestricted case results from the CCF growing in area use as the rotation age grows.

Except for including different area utilization, the two models for CCF have the same
assumptions as the basic Faustmann models. The results indicate that the higher standing
volume as seen in practical management of CCF may be optimal under these assumptions.

The simple numerical examples also show that longer rotations could be economically
optimal in the CCF case. This result does not mean that very high rotation ages are optimal,
but in a CCF it certainly sheds new light onmore than 100 years of debate among practitioners
of various forestmanagement schools. It has sometimes been argued that due to the forest area
being restricted, observed high rotation ages are justified by the longer maximum sustained
yield rotations obtained under Faustmann with an area restriction (Möhring 2001). However,
the area restricted CCF model we present has an unambiguously lower optimal rotation age
compared to the area restricted Faustmann model. In the real world other goals than the pure
economic objectives could be used, e.g. sustainability constraints, tradition or other reasons
(Möhring 2001). As Hartman (1976) shows this may result in ambiguous consequences on
the rotation age—depending on the specification of the amenity.

5.1 Limitations, Caveats and Future Improvements

One obvious caveat in this work is the Taylor series approximation used in our unrestricted
continuous cover forest model, which leads to an underestimation of the value of the CCF.
For our numerical example, results showed that the underestimation was in the range 7–14%
depending on the interest rate, and at the lower end for the most likely and reasonable interest
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rates. However, for the first order conditions, this affects the right-hand-side in ambiguous
ways—as also for the already included additional terms. Consequently the effect on rotation
age is likely to be small.

In continuous cover systems, a large number of individuals in the youngest age classes
are typically being reduced through selective thinning or natural mortality as time passes.
These individuals often grow underneath older trees and take over much of the released area,
but many of the trees also die early due to competition. We have not explicitly modelled
this aspect in the paper, but have included it in the interpretation of a(t) as being the area
of the age class rather than of a single tree. We use a rather crude approximation of the
a(t) function. Ideally, the a(t) should be based on data better approximating the ecological
aspects of the forest growth, taking into account that the area function, a(t), may represent
more than the area as such, and for example include the productive factors related to the area
like light, nutrients and precipitation. Likewise, extensions could include or reflect a time-lag
for area utilization, reflecting that when a tree is harvested, it may take a little while before
the productive factors are utilized completely by neighbouring trees. More complicated is the
introduction on between-tree competition for area and resources, and its effect onm(t). Such
extensions would call for numerical methods for analysis as e.g. Meilby and Nord-Larsen
(2012), as mathematical tractability will be lost.

Another caveat is that ignoring thinnings may perhaps bias towards a somewhat larger
difference between the CCF and the Faustmann models. In the even aged Faustmann forest,
young forest stands include many more tree seedling and young trees than will be around for
maturity. The surplus trees are in some management systems harvested in thinnings along
the life of the stand, resulting in cash flows (sometimes negative cash flows, i.e. costs). These
surplus trees utilise area and resources not utilised by the final harvest trees before later in
their life, and thus represent an attempt to increase the efficiency of area use. Nevertheless, in
the CCF as modelled here, the efficiency will be greater as the area following a final harvest
is not allocated only to a large host of new tree seedlings of which many will never produce
much value, but rather the bulk of area is allocated to larger trees producing much more
valuable wood over the time period.

Related to this caveat, one would be right in questioning ifm(T ) and a(T ) are likely to be
the same in two so different management systemswithmost likely quite different competition
dynamics. This is a simplifying assumptionmade in this paper,which is necessary to be able to
say something precise about the role of the differences in land use dynamics. It will remain an
empirical question, probably one specific to each the different kinds of CCF and Faustmann
management practiced, if such differences exist and if they will matter for decisions. As
Faustmann management usually focus much on regulating competition across species to the
benefit of the final harvest individual, one could expect thatm(T ) for a Faustmann tree would
be higher for any t than for the CCF case, and likewise for a(T ); this would leave the impact
on our results ambiguous.

Turning to other assumption, we can use existing knowledge on the effects of some of
these aspects in the Faustmann model (see Newman 2002; Amacher et al. 2009 for reviews),
to draw a few conclusions about the possible results and effects of including them. First, we
may look at regeneration costs as they are usually expected to be lower for continuous cover
forest.We know that, in the Faustmann case, lower regeneration costs imply a shorter rotation
age (cf. e.g. Amacher et al. 2009). Thus, we would expect including costs to further increase
the value of the CCF and reduce the optimal rotation age relative to the Faustmann forest.
Second, higher harvesting cost are expected in CCF than in even-aged forest (see e.g. Price
and Price 2006; Amacher et al. 2009), and we know from the Faustmann solution that this
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prolongs the rotation. Thus, the effect of including higher harvesting cost in CCF is likely to
prolong rotations of the CCF relative to the Faustmann forest.

A final comment is justified regarding the issue of transitions from one forest system to
another. Our paper has analysed equilibriumversions of theCCF andFaustmannmanagement
systems, and has not considered the difficult, but relevant question if and how, it would be
optimal tomove fromone system to another. This transition has been discussed in the practical
debate, but we leave it for further research to discuss and analyse this. To bemeaningful, such
analyses are likely best undertaken as numerical and empirically well informed analyses of
actual management systems and situations.

6 Concluding Remarks

The movement towards CCF or near-natural forest management is ongoing in a number of
European countries, and is globally linked to sustainable forest management. CCF has a
potential to change rather drastically the way the forest production apparatus works. This
will also have strong implications for the way economists should analyze these forest systems
in order to suggest reliable management principles with transparent economic outcomes.

In the literature, very few attempts have been conducted to elucidate analytically onemajor
and intriguing difference between the even-aged forest management system and the CCF:
the area utilization dynamics. The former brings about cyclical cash flows originating from
the harvesting of trees, which can safely be considered as independent decision units. Under
CCF the area released when harvesting a tree is allocated to a number of trees of varying
ages and productive capacities already in place or soon to be in place.

The present paper only attempts to capture parts of these different area dynamics inmodels
simple enough to answer some of the key questions in forest management. How should a
forest be valued? And when should a tree be harvested? We develop models for CCF which
captures the key dynamic by explicit accounting for area reallocation and for weighting the
productivity of each age class by the area occupied. Using these models we are able to show
that optimally managed continuous cover forests with and without an area restriction will
always have a larger standing value than the corresponding Faustmann based normal forest.
This is in accordance with empirical observations discussed in the literature. The unrestricted
models allows for both shorter and longer rotation ages in the CCF case compared with the
Faustmann case, whereas in the area restricted case the rotation age is unambiguously shorter
under the CCF regime. We provide an illustration using simple functional forms resembling
very roughly the growth potential in a beech forest in Denmark.

The models are rather simple and crude, because we focus explicitly on the different
area utilization dynamics to allow for comparisons with the well-established results of the
Faustmann equation. Many extensions can be conducted to make this framework closer to
the empirical reality of silviculture, and we have discussed some of the likely impacts of such
extensions.
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